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401
GRAPH A TOPOLOGY OF A SPLIT ARCHITECTURE L~/
NETWORK
v
TRAVERSE THE SET OF NODES WITHIN THE GRAPH TO 403

CALCULATE A PROTECTION METRIC FOR EACHNODE, [~/
WHEREIN THE PROTECTION METRIC MEASURES
RESILIENCE OF THE SPLIT ARCHITECTURE NETWORK AS
A DEGREE OF NODE FAILURE PROTECTION WITHIN THE
SPLIT ARCHITECTURE NETWORK FOR A POTENTIAL
CONTROLLER PLACEMENT, THE DEGREE OF NODE
FAILURE PROTECTION DETERMINING A SUBSET OF
PROTECTED NODES IN THE SET OF NODES, WHERE A
PROTECTED NODE IN THE SUBSET OF PROTECTED NODES
CAN REDIRECT CONTROL TRAFFIC OVER A TUNNEL TO AN
INTERMEDIATE NODE IN THE GRAPH THAT IS NOT
DOWNSTREAM OF THE PROTECTED NODE, AND WHERE
THE TUNNEL TRAVERSES AT LEAST ONE DOWNSTREAM
NODE OF THE PROTECTED NODE

'

SELECTING THE NETWORK ELEMENT CORRESPONDING 405
TO THE NODE WITH THE BEST PROTECTION METRIC [
TO BE THE CONTROLLER FOR THE SPLIT ARCHITECTURE
NETWORK

FIG. 4
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RECEIVE TOPOLOGICAL GRAPHFOR | 501
SPLIT-ARCHITECTURE NETWORK

v 503
BY%
SELECT NEXT NODE IN GRAPH <
v
CALCULATE ROUTING TREEFOR | 505
SELECTED NODE WITH SELECTED
NODE AS ROOT NODE AND SET
INITIAL WEIGHT OF TREE TO ZERO
Y 507

SELECT NEXT DOWNSTREAM -~
NODE IN ROUTING TREE

A 4

v
SET INITIAL WEIGHT OF SELECTED 509
DOWNSTREAM TO ZERQ [

511

DETERMINE NO NODE
PROTECTION OF PROTECTION
SELECTED DOWNSTREAM 515
NODE
0 il )
SET WEIGHT OF SELECTED

NO
DOWNSTREAM NODE
PROTECTION | EQUAL TO NUMBER OF
UNPROTECTED DOWNSTREAM
NODES FOR SELECTED
DOWNSTREAM NODE

A\ 4 v

SUM WEIGHT OF SELECTED DOWNSTREAM | 517
NODE WITH CURRENT ROOT NODE WEIGHT

ALL DOWNSTREAM 519
NODES OF CURRENT

ROOT NODE SUMMED?

NO

ALL NODES
IN GRAPH
EXAMINED?

NO

SELECT CONTROLLER BASED ON NODE 523 F | G 5
WITH HIGHEST PROTECTION METRIC -
(MINIMUM TREE WEIGHT)
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601
RECEIVE TOPOLOGICAL GRAPHFOR  }~_~

SPLIT-ARCHITECTURE NETWORK

¢ 605
SORT NODES BASED ON NUMBER OF  }~_/
LINKS TO NEIGHBOR NODES IN

DESCENDING ORDER
v 605
SELECT NEXT NODE FROM SORTED ~ p~_~
> LIST OF NODES
DETERMINE NUMBER OF PROTECTED 607

NEIGHBOR NODES WITH BACK UP B
CONNECTION TO OTHER NODES OR
TUNNELS TO NODES IN OTHER
SUBTREES

609

SET CURRENT 611
YES SELECTED NODE p~_/
AS CONTROLLER

CURRENT SELECTED
NODE GREATEST NUMBER
OF PROTECTED

EIGHBORS? LOCATION
613
IS NUMBER OF
PROTECTED NEIGHBOR YES 615
FOR CURRENT CONTROLLER OUTPUT ~_/
LOCATION GREATER THAN CONTROLLER
NUMBER OF NEIGHBOR NODES LOCATION
OF NEXT NODE

IN SORTED LIST?

FIG. 6
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1
CONTROLLER PLACEMENT FOR FAST
FAILOVER IN THE SPLIT ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 13,402,732 filed Feb. 22, 2012 which
was related to U.S. patent application Ser. No. 13/236,296
filed Sep. 19, 2011.

FIELD OF THE INVENTION

The embodiments of the invention are related to the orga-
nization and design of networks. Specifically, the embodi-
ments of the invention relate to a method and system for
determining placement of controllers for switches in a split
architecture network with control de-coupled from forward-
ing.

BACKGROUND

A split-architecture network design introduces a separation
between the control and forwarding components of a net-
work. Among the use cases of such architecture are the
access/aggregation domain of carrier-grade networks, mobile
backhaul, cloud computing, and multilayer (1.3 & .2 & L1,
OTN, WDM) support, data centers, all of which are among
the main building blocks of a network architecture. There-
fore, proper design, management and performance optimiza-
tion of these networks are of great importance.

Unlike the traditional network architecture, which inte-
grates both the forwarding (data) and the control planes in the
same box (network element), a split architecture network
decouples these two planes and executes the control plane on
servers that might be in different physical locations from the
forwarding elements (switches). The use of a split architec-
ture in a network enables the simplification of the switches
implementing the forwarding plane and shifts the intelligence
of the network into a number of controllers that oversee the
switches.

The tight coupling of the forwarding and control planes in
a traditional architecture usually results in an overly compli-
cated control plane and complex network management. This
is known to create a large burden and high barrier to new
protocols and technology developments. Despite the rapid
improvement of line speeds, port densities, and performance,
the network control plane mechanisms have advanced at a
much slower pace than the forwarding plane mechanisms.

In a split architecture network, controllers collect informa-
tion from switches, and compute and distribute the appropri-
ate forwarding decisions to switches. Controllers and
switches use a protocol to communicate and exchange infor-
mation. An example of such protocol is OpenFlow (see
www.openflow.org), which provides an open and standard
method for a switch to communicate with a controller, and it
has drawn significant interest from both academics and indus-
try. FIG. 1 is a diagram showing an overview of the OpenFlow
interface between a switch and a controller. The forwarding
table in an OpenFlow switch is populated with entries con-
sisting of: a rule defining matches for fields in packet headers;
an action associated to the flow match; and a collection of
statistics on the flow.

When an incoming packet matches a particular rule, the
associated actions are performed on the packet. A rule con-
tains key fields from several headers in the protocol stack, for
example Ethernet MAC addresses, IP address, IP protocol,
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TCP/UDP port numbers as well as the incoming port number.
To define a flow, all the available matching fields may be used.
But it is also possible to restrict the matching rule to a subset
of the available fields by using wildcards for the unwanted
fields.

The de-coupled control platform of the split architecture
eases the task of modifying the network control logic and
provides a programmatic interface upon which developers
can build a wide variety of new protocols and management
applications. In this model, the data and control planes can
evolve and scale independently, while the cost of the data
plane elements is reduced.

SUMMARY

The embodiments ofthe invention include a method imple-
mented by a network topology design system, where the
network topology design system includes a processing
device. The method determines placement of a controller
within a network with a split architecture where control plane
components of the split architecture network are executed by
a controller and the control plane components are separate
from data plane components of the splitarchitecture network.
The placement of the controller is selected to minimize dis-
ruption of the split architecture network caused by a link
failure, a switch failure or a connectivity loss between the
controller and the data plane components. The method
includes graphing a topology of the split architecture net-
work, with links in the split architecture network represented
as a set of edges in a graph and network elements in the split
architecture network represented as a set of nodes. The meth-
ods also include traversing the set of nodes within the graph to
calculate a protection metric for each node, wherein the pro-
tection metric measures resilience of the split architecture
network as a degree of node failure protection within the split
architecture network for a potential controller placement, the
degree of node failure protection determining a subset of
protected nodes in the set of nodes, where a protected node in
the subset of protected nodes can redirect control traffic over
a tunnel to an intermediate node in the graph that is not
downstream of the protected node, and where the tunnel
traverses at least one downstream node of the protected node.
Further, the method includes selecting the network element
corresponding to the node which will result in a best overall
protection strategy for the network to be the controller for the
split architecture network.

The embodiments include a network with a split architec-
ture where control plane components of the split architecture
network are executed by a controller and the control plane
components are separate from data plane components of the
split architecture network. The placement of the controller is
selected to minimize disruption of the split architecture net-
work caused by a link failure, a switch failure or a connectiv-
ity loss between the controller and the data plane components.
The network comprises a set of network elements intercon-
nected by a set of communication links, each network ele-
ment in the set of network elements executes a switch that is
controlled by and in communication with the controller. The
controller is executed by one of the set of network elements,
wherein a position of the network element in the set of net-
work elements within the split architecture network provides
an optimized number of protected nodes between the control-
ler and each of the network elements in the set of network
elements. The optimized location corresponds to a best pro-
tection strategy for all the network elements in the set of
network elements. The protection metric measures resilience
of the split architecture network as a degree of node failure
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protection within the split architecture network, the degree of
node failure protection determining a subset of protected
network elements in the set of network elements, where a
protected network element in the subset of protected network
elements can redirect control traffic over a tunnel to an inter-
mediate network element in the graph that is not downstream
of the protected network element, and where the tunnel
traverses at least one downstream network element of the
protected network element.

The embodiments include a computer system for determin-
ing a placement of a controller for a split architecture network
where control plane components of the split architecture net-
work are executed by the controller and the control plane
components are separate from data plane components of the
split architecture network. The placement of the controller is
selected to minimize disruption of the split architecture net-
work caused by a link failure, a switch failure or a connectiv-
ity loss between the controller and the data plane components.
The computer system comprises a processor configured to
execute a topology graphing module and controller place-
ment module, the topology graphing module configured to
graph a topology of the split architecture network, with links
in the split architecture network represented as a set of edges
in a graph and network elements in the split architecture
network represented as a set of nodes. The controller place-
ment module is configured to traverse the set of nodes within
the graph to calculate a protection metric for each node. The
protection metric measures resilience of the split architecture
network as a degree of node failure protection within the split
architecture network for a potential controller placement, the
degree of node failure protection determining a subset of
protected nodes in the set of nodes, where a protected node in
the subset of protected nodes can redirect control traffic over
a tunnel to an intermediate node in the graph that is not
downstream of the protected node, and where the tunnel
traverses at least one downstream node of the protected node.
The controller placement module further is configured to
select the network element corresponding to the node with a
best protection metric to be the controller for the split archi-
tecture network.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings in which like references indicate similar elements.
It should be noted that different references to “an” or “one”
embodiment in this disclosure are not necessarily to the same
embodiment, and such references mean at least one. Further,
when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to affect
such feature, structure, or characteristic in connection with
other embodiments whether or not explicitly described.

FIG. 1 is a diagram of one embodiment of an example
architecture for a OpenFlow network.

FIGS. 2A and 2B are diagrams of one embodiment of a
split architecture network that contains both protected and
unprotected switches, each Figure illustrates a separate pro-
tection mechanism.

FIG. 3 is a diagram of one embodiment of a design system
coupled to a network with optimized controller placement

FIG. 4 is a flowchart of one embodiment of a controller
placement optimization process

FIG. 5 is a flowchart of one embodiment of an optimal
controller placement process
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FIG. 6 is a flowchart of one embodiment of a ‘greedy’
controller placement process

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description. It will be appreciated,
however, by one skilled in the art, that the invention may be
practiced without such specific details. Those of ordinary
skill in the art, with the included descriptions, will be able to
implement appropriate functionality without undue experi-
mentation.

The operations of the flowcharts will be described with
reference to the exemplary embodiments of diagrams. How-
ever, it should be understood that the operations of the flow-
charts can be performed by embodiments of the invention
other than those discussed with reference to the diagrams, and
the embodiments discussed with reference to diagrams can
perform operations different than those discussed with refer-
ence to the flowcharts.

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
electronic devices (e.g., an end station, a network element,
server or similar electronic devices). Such electronic devices
store and communicate (internally and/or with other elec-
tronic devices over a network) code and data using non-
transitory machine-readable or computer-readable media,
such as non-transitory machine-readable or computer-read-
able storage media (e.g., magnetic disks; optical disks; ran-
dom access memory; read only memory; flash memory
devices; and phase-change memory). In addition, such elec-
tronic devices typically include a set of one or more proces-
sors coupled to one or more other components, such as one or
more storage devices, user input/output devices (e.g., a key-
board, a touch screen, and/or a display), and network connec-
tions. The coupling of the set of processors and other com-
ponents is typically through one or more busses and bridges
(also termed as bus controllers). The storage devices repre-
sent one or more non-transitory machine-readable or com-
puter-readable storage media and non-transitory machine-
readable or computer-readable communication media. Thus,
the storage device of a given electronic device typically stores
code and/or data for execution on the set of one or more
processors of that electronic device. Of course, one or more
parts of an embodiment of the invention may be implemented
using different combinations of software, firmware, and/or
hardware.

As used herein, a network element (e.g., a router, switch,
bridge, or similar networking device.) is a piece of network-
ing equipment, including hardware and software that com-
municatively interconnects other equipment on the network
(e.g., other network elements, end stations, or similar net-
working devices). Some network elements are “multiple ser-
vices network elements” that provide support for multiple
networking functions (e.g., routing, bridging, switching,
Layer 2 aggregation, session border control, multicasting,
and/or subscriber management), and/or provide support for
multiple application services (e.g., data collection). The
embodiments described herein use the example of network
element in the form of a switch. However, the embodiments
are not limited to switches and are applicable to other types of
network elements.
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As used herein resilience is the ability to provide and
maintain an acceptable level of service in the face of faults
and challenges to normal operation. As used herein failure
probability is the frequency with which an engineered system
or component fails, expressed as the number of failures per
hour, or the probability that each node fails over the long term.

In evaluating a network design, network resilience is an
important factor, as a failure of a few milliseconds may easily
result in terabyte data losses on high-speed links. In tradi-
tional networks, where both control and data packets are
transmitted on the same link, the control and data information
are equally affected when a failure happens. The existing
work on the network resilience has therefore assumed an
in-band control model, meaning that the control plane and
data plane have the same resilience properties. However, this
model is not applicable to split-architecture networks.

A link failure indicates that traffic traversing a link can no
longer be transferred over the link. The failure can be either of
a link between two switches or of a link between one control-
ler and the switch to which it connects. In most cases, these
links fail independently.

A switch failure indicates that the corresponding network
element is unable to originate, respond, or forward any
packet. Switch failures can be caused by software bugs, hard-
ware failures, misconfigurations, and similar issues. In most
cases, these switches fail independently.

Special cases of failure include connectivity loss between a
switch and a controller. A switch can lose connectivity to its
controller due to failures on the intermediate links or nodes
along the path between the switch and the controller. In one
embodiment, whenever a switch cannot communicate with its
assigned controller, the switch will discard all the packets on
the forwarding plane managed by the controller, even though
the path on the forwarding plane is still valid. In other
embodiments, a subset of the traffic can be forwarded on
forwarding plane or similar limited functionality can con-
tinue for a limited amount of time until a connection with an
assigned controller or another controller is re-established.
Therefore, this can be considered as a special case of switch
failure.

The control packets in split-architecture networks can be
transmitted on different paths from the data packet (or even on
a separate network). Therefore, the reliability of the control
plane in these networks is no longer directly linked with that
of'the forwarding plane. However, disconnection between the
controller and the forwarding plane in the split architecture
could disable the forwarding plane; when a switch is discon-
nected from its controller, it cannot receive any instructions
onhow to forward new flows, and becomes practically offline.

In one embodiment of a split-architecture network, each
switch is pre-programmed with a path to reach the controller.
Upon a link or node failure, the switch relies on the controller
to detect such failure and recompute the new path for the
switch. However, handling of all failures by the controller
could result in large delays in the network. In another embodi-
ment, pre-configuration of a backup path and/or a tunneling to
an intermediate switch is used to re-establish communication
with a controller, so that if the primary output link does not
work properly, the backup (secondary) output link or an
encapsulation of control traffic through a tunnel to an inter-
mediate switch could be used.

When a switch detects a failure in its outgoing link or its
immediate upstream node, it immediately changes its route to
the controller, and uses the backup path, i.e., outgoing inter-
face, pre-programmed in the switch to reconnect to the con-
troller. In the alternate, the switch detects the failure and
encapsulates the control traffic for transmission over a tunnel
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6

to an intermediate switch that decapsulates the control traffic
and forwards the control traffic to the controller. This takes
place without a need to involve the controller and without any
effects on the rest of the routes in the network and on the
connections of the downstream nodes to the controller. In
other words, there will only be a local change in the outgoing
interface of the affected switch. All other connections in the
network will remain intact. Without such backup paths or
encapsulation options, detecting of any failures in switches or
links by the controller must be based on some implicit mecha-
nisms, such as when Hello messages are not received by the
controller from a switch. This introduces large delays in the
network for detecting the exact location of the failure and
re-establishing the controller-switch connections. If no
backup path or tunneling option can be configured for a
switch, then the connection of the switch to the controller will
be interrupted in case of a failure in the primary path to the
controller.

Asusedherein, a switch is considered to be protected (in its
connection to the controller) against the failure of its imme-
diate upstream switch and its outgoing link’ if either of the
following conditions holds: 1) the switch can use a backup
outgoing link for its control traffic towards the controller, or
i) the switch can send its control traffic over a tunnel to
another (intermediate) switch and from there to the controller.

When a failure happens in the outgoing link or immediate
upstream node of a protected switch, the switch can either use
the backup outgoing link (if condition i holds) to reconnect to
the controller. In the alternative (if condition ii holds), the
switch can encapsulate the control message inside a data
message and send it to another (intermediate) switch. When
the intermediate switch receives this message, it will de-
capsulate the message and send it, like its own control traffic,
to the controller.

If none of the above two conditions are satisfied, then in
case of a failure in the outgoing link or the immediate
upstream switch, the connection between the switch and the
controller will be interrupted. The goal is to minimize the
chance of such interruption. The most resilient scenario is,
clearly, when every switch in the network is protected. But if
that is not the case, then some optimization is required to
minimize the risk of control-traffic interruption.

Using this protection scheme in a split architecture net-
work, it is important to place the controller such that the
connection between the control plane and the forwarding
plane is less likely to be interrupted. A good selection of the
controller location must result in reliable paths from the
switches to the controller, in the sense that a large number of
switches must have backup paths to the controller.

The embodiments of the invention provide a method and
system for avoiding the disadvantages of the prior art. Exist-
ing proposals on split-architecture network design assume
fixed locations for the network controllers. While there has
been some research on the routing mechanisms between net-
work controllers and switches, strategies for choosing opti-
mized location for the network controller have not been
developed. As a result, controller placement in split architec-
tures does not take into account the possibility of disconnec-
tion between a controller and the forwarding plane and seek to
minimize this possibility.

Further, schemes for split-architecture networks with mul-
tiple controllers are focused on partitioning the network and
assigning one controller to each partition in such a way that
switches inside each partition are well connected. This does
not address finding an optimal location for a controller in a
given network without partitioning. Schemes for placing a
single controller in a split-architecture network may place the
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controller at a node that maximizes the resiliency of the
connection between the controller and the switches, however,
these schemes are based on a restricted definition of protec-
tion. In such schemes a protected switch is a switch with a
backup outgoing link and does not consider the possibility of
sending the control traffic over a tunnel to another switch and
from there to the controller.

The embodiments of the invention overcome these disad-
vantages of the prior art. The embodiments of the invention
place a single controller in a split architecture area, in a
location selected to optimize the connection resilience
between the controller and the switches in that area. No
assumptions on how the partitioning of the split-architecture
areas are made. The partitioning, if any, can be based on any
arbitrary metrics such as geographical constraints. The
embodiments of the invention encompass two example pro-
cesses (i.e., an optimal process and a greedy process) for
choosing the controller location to optimize the connection
resilience between the controller and the switches, i.e., to
maximize the number of switches with pre-configured
backup paths to the controller through either direct backup
links or through tunneling control traffic to an intermediate
network element that is not downstream from the point of
failure.

The embodiments support a more general definition for a
protected switch. If there is no backup outgoing interface for
a switch, the switch is still considered to be protected if it can
send its control traffic to another (intermediate) switch and
from there to the controller. In this case, the switch encapsu-
lates the control message inside a data message to the inter-
mediate switch. When the intermediate switch receives this
message, it will de-capsulate the message and send it (like its
own control traffic) to the controller. This alternate protection
mechanism is referred to herein as tunneling-based protec-
tion, and the term tunneling is to refer to the process of
encapsulating the traffic message inside a data message, send-
ing it to the intermediate switch, and finally de-capsulating it
at the intermediate switch. Using this more general definition
of protection, the embodiments include processes and sys-
tems to optimally place the controller in the network such that
the resiliency is maximized.

Network Controller Location

The resiliency of the connection between the control plane
and the forwarding plane is of great importance in split-
architecture networks. If this connection is interrupted, then
the forwarding plane will not know how to forward new flows
(i.e., those flows with no existing rules in switches) and will
lose its forwarding functionality. The embodiments of the
invention provide a process to decide where to place the
split-architecture controller, such that this connection (be-
tween the control plane and the forwarding plane) is less
likely to be interrupted. Given a network topology, the pro-
cess seeks to choose the right node in the network to locate the
controller at that node. A good selection of a network’s con-
troller location must result in reliable paths from the switches
to the controller, in the sense that each switch must have a
backup (secondary) path to the controller or tunneling based
protection which won’t be affected by the same failure, in
case its primary path fails this backup path can be either a
direct link between the switch detecting the failure and
another switch in the network that remains in communication
with the controller or tunneling-based protection in the form
of'anindirect link between the switch detecting the failure and
an intermediate switch over a tunnel where the tunnel
traverses at least one downstream switch.
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Protection Metric

In order to evaluate different controller placement strate-
gies in a network (and to develop a policy for choosing a good
location), a protection metric is utilized, which is based on
node protection. This metric is applied to the split architecture
to assess the network’s resiliency against link failures, as
defined above and further explained herein below.

Transient failures happen relatively frequently even in
well-managed Internet Protocol (IP) networks. However, the
network service is expected to be always available with the
increasing demand on delivering critical services. With the
high requirements on network reliability, the embodiments of
the invention seek to improve the resilience of the connectiv-
ity between the controller and the switches in a split architec-
ture network.

Network Environment

The embodiments of the invention provide a process where
the forwarding of data packets resumes after a failure as soon
as possible. The existing interior gateway protocols (IGPs)
such as open shortest path first (OSPF) and intermediate
system to intermediate system (IS-IS) typically take several
seconds to converge, which does not meet a sub-50 ms level
of failure recovery time, which is expected for network reli-
ability. The controller could detect the failures in switches or
links using some implicit mechanisms, e.g., when hello mes-
sages are not received by the controller from a switch. How-
ever, this method will also introduce a large delay in the
network for failure detection and service restoration.

In one embodiment, the decision of protection switching is
made locally and pre-determined by the controller (i.e. at the
network element detecting the failure). This is different from
the scenario in a traditional network, because the network
element does not have a complete topology of the network.
The network element is only a simple switch in the forward-
ing plane and only receives forwarding rules from the con-
troller. When losing the connectivity to the controller, the
switch has to make the decision of failover independently
without any instructions from the controller. In other words,
there will only be a local change in the outgoing interface of
the affected switch. All other connections in the network will
remain intact. In this manner the process keeps the forward-
ing element, i.e., the switch, as simple as possible.

In one embodiment, the controller is in the same physical
network as the switches. That is, the existing infrastructure of
the split architecture network (existing links and switches) is
used to connect the controller to all the switches in the net-
work, as opposed to using a separate infrastructure to connect
the control and forwarding planes. In other embodiments, a
separate network infrastructure is used for communication or
any combination thereof.

Asused herein, a network of switches is denoted by a graph
G=(V, E), where V is the set of nodes (switches and the
controller) in the network and E is the set of bidirectional
edges (links) between nodes. A cost is associated with each
link in the network. Based on assigned link costs, shortest-
path routes are calculated between any two nodes in the
network. It is assumed that the cost on each link applies to
both directions of the link. It is also assumed that there is no
load balancing on the control traffic sent between the switches
and the controller. Therefore, each node has only one path to
reach the controller. In other words, the control traffic is sent
from and to the controller over a tree, rooted at the controller,
which will be referred to herein as a controller routing tree.
This routing tree covers all the nodes in the network and a
subset of the edges. The same routing tree is used for com-
munications between the controller and the switches in both
directions.
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With a given controller location, any shortest-path routing
protocol forms a tree T, rooted at the controller node, which
covers all the nodes and a subset of the edges. As mentioned
above, this tree is referred to as the controller routing tree.
FIGS. 2A and 2B show a network and its controller routing
tree. In these figures, the dashed lines show all links in the
network, and the solid lines show the links used in the con-
troller routing tree. Each node can reach the controller by
sending its control traffic along the paths in the controller
routing tree. In these examples, both directions of each link
have the same cost, and therefore, the same routing tree will
be used for communications between the controller and the
switches in both directions.

In the controller routing tree T, node u is an upstream node
of'node v if there is a path in T from node v to node u towards
the controller. Node u is called a downstream node of node v
if there is a path in T from node u to node v towards the
controller. In the example networks depicted in FIGS. 2A and
2B, for example, node S4 is an upstream node of nodes S7 and
S8, and these two nodes are downstream nodes of node S4. In
the controller routing tree, a node’s parent is its immediate
upstream node and a node’s children are its immediate down-
stream nodes. Because of the assumed tree structure, each
node has only one immediate upstream node in T. In the
example and in the embodiments of the controller placement
process, it is assumed that there is no load balancing on the
control traffic sent from the switches to the controller. That is,
we assume each node in the network has only one immediate
upstream node in T. The symbols introduced herein (e.g., G,
T, v and v) are used herein below to represent these concepts
for sake of clarity and accuracy.

Node and Link Failures

As discussed herein above, a switch is considered to be
protected (in its connection to the controller) against the
failure of its immediate upstream switch and its outgoing link
if the switch can either:

1) Use a backup outgoing link for its control traffic towards

the controller; or

i) Send its control traffic over a tunnel to another (inter-

mediate) switch and from there to the controller.

For example, a protected switch that detects a failure in its
outgoing link or its immediate upstream node will if condi-
tion (i) holds, as soon as the failure is detected, immediately
change its route to the controller and use the backup outgoing
link to reconnect to the controller. If condition (ii) holds, then
the switch can encapsulate the control message inside a data
message to the intermediate switch. When the intermediate
switch receives this message, it will de-capsulate the message
and send it (like its own control traffic) to the controller. In
both cases, the re-routing of the control traffic takes place
without any impacts on the rest of on the connections of other
switches to the controller. In other words, there will only be a
local change in the outgoing interface of the affected switch.
All other connections in the network will remain intact. In one
embodiment, the switch can carry out either of these failover
processes (i.e., those tied to condition (i) or (ii)) automatically
without the participation of the controller.

If neither of these two conditions are satisfied, then in case
of a failure in the primary path to the controller, the connec-
tion between the switch and the controller will be interrupted.
The controller placement process and system described
herein is designed to minimize the chance of such interrup-
tion. The most resilient configuration of the network is,
clearly, when each and every switch in the network is pro-
tected. But if that configuration is not possible, then some
optimization of the controller placement is required to mini-
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mize the risk of control traffic interruption between the con-
troller and the switches in the network.

For those switches that are directly connected to the con-
troller, upstream node protection is not defined or quantified,
because the immediate upstream node is the controller. In
split-architecture networks where the traditional failure man-
agement tools are deployed there is no extended signaling
mechanism for a node to inform its downstream nodes of a
failure. Therefore, if a switch is disconnected from the con-
troller, then all its downstream nodes will also be discon-
nected, even if they are themselves protected against their
outgoing links or immediate upstream nodes failures. This
means that in evaluating networks resiliency, more impor-
tance should be assigned to nodes closer to the controller
(which is the root of the controller routing tree). To represent
these facets of the network that affect the resilience of the
network, weights are defined for each node which are based
on the number of its downstream nodes.

A weight of a routing tree can be defined to be the sum of
the weights of all its unprotected nodes. This weight can be
used to measure ‘“unprotectability’ or resilience of the net-
work for an associated controller position. For a given routing
tree T, this routing tree weight can be described or represented
by ‘weight(T),” which should be minimized in order to maxi-
mize the resiliency of the network.

FIGS. 2A and 2B shows an example networks and two
failure scenarios. The solid lines between the switches and
controller in these figures show the shortest-path tree between
the controller and the switches. If there are no failures in the
network, the control traffic will be sent to/from the controller
on this tree represented by the solid lines.

For example, switch S4 in this network is connected to the
controller through its upstream parent S1. In both scenarios
shown in FIGS. 2A and 2B, switch S4 is protected. This is
because in case of failure in the immediate upstream switch
S1 or the link connecting S4 and S1, there is still a backup
path for the control traffic of switch S1 to reach the controller.
In the case illustrated in FIG. 2A, there is a link between S4
and S5 represented by the dotted line. This link is not part of
the routing tree, so this link can be configured in switch S4 as
a backup outgoing link for the control traffic. Therefore, if S4
detects a failure in the primary outgoing link between
switches S4 and S1 or at the upstream switch S1, then switch
S4 can use the backup outgoing link between switches S4 and
Ss.

In the case illustrated in FIG. 2B, there is no link connect-
ing S4 to another switch that can be used as a backup link. It
should be noted that none of the links connecting S4 to its
children (switches S6 and S8) can be used as a backup out-
going link for the control traffic, because they do not have a
path in the routing tree to the controller that does not pass
through the failed link or failed switch (i.e., link between
switches S4 and S1 or the switch S1). In this case however,
there is a link between switches S8 and S9. Here, switch S4
can make a tunnel from switch S8 to switch S9 (by encapsu-
lating the control traffic with switch S9 as the destination).
When switch S9 receives and de-capsulates this traffic, it can
send the traffic to the controller (like its own control traffic) on
the path S9-S5-S2-Controller. It should be noted that this path
does not pass through S4 and S1, thereby avoiding the failed
link or switch in this example. In other words, an intermediate
switch has been selected by the controller whose path to the
controller is not affected by the failure of switch S1 or the link
between switches S4 and S1.

Evaluating the Protection Status of a Switch

In one embodiment, each switch S in a split-architecture

network can have its protection status evaluated. As used
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herein “parent(S)’ denotes the immediate upstream switch of
switch S, and ‘downstream(S)’ denote all the downstream
switches of switch S (that is, its children and children of
children and so on). Each switch S in a given network is
protected according to our definition above ifand only if there
exists switches A and B in the network such that using stan-
dard set theory notation:

1. Ais in {S} U downstream(S)—i.e., A is either S or one

of Switch S’s downstream nodes.

2. B is not in downstream(parent(S))

3. Thereis alink between A and B, which is not a part of the

controller routing tree

If the above three conditions hold, then in case of failure,
switch S can send its control traffic over a tunnel to switch B
and from there to the controller. If switch A happens to be S
itself, then switch S can use link S-B as a backup outgoing
link for the control traffic; hence, there is no need for tunnel-
ing in this special case. The above conditions basically guar-
antee that the control traffic could be sent over a sub-tree other
than the one rooted at the parent of node S. That is, the traffic
could bypass the failed switch/link

Since the controller routing tree is a shortest-path tree, the
three conditions above also guarantee that the path from
switch B to the controller does not pass through S and its
immediate upstream node (parent). Therefore path S-B-con-
troller could be used when switch S detects a failure (either in
its immediate upstream node or in the link connecting S to its
immediate upstream node).

Returning the examples of FIGS. 2A and 2B, the switches
A=S4 and B=S5 in FIG. 2A satisfy all the above three con-
ditions, and in FIG. 2B, switches A=S8 and B=S9 satisfy
these conditions.

Implementation of Protection Using OpenFlow

In one embodiment, the controller placement process can
be applied to any implementation of a split architecture net-
work. The forwarding table in an OpenFlow switch, for
example, is populated with entries consisting of a rule defin-
ing matches for fields in packet headers, a set of actions
associated with the flow match, and a collection of statistics
on the flow. The OpenFlow specification version 1.1 intro-
duces a method for allowing a single flow-match trigger for-
warding on more than one of the ports of the switch. Fast
failover is one of such methods. Using this method, the switch
executes the first live action set. Each action set is associated
with a special port that controls its liveness. OpenFlow’s fast
failover method enables the switch to change forwarding
without requiring a round trip to the controller.

Controller Placement Process

The protection of nodes in a network depends on both the
selection of the primary paths (for a given controller location)
and the choice of the controller location. As set for below, a
general routing policy is defined, which, for each choice of
the controller location, selects the primary paths in the net-
work for reaching the controller. This selection could be
based on any desired metrics, e.g., performance metrics like
delay or load. Also discussed are what a thorough search
includes to find the best location for this arbitrarily selected
primary paths.

Design System Architecture and Example Network with
Optimized Controller Location

FIG. 3 is a diagram of one embodiment of a design system
coupled to a network with an optimized controller placement.
The diagram provides an illustration of an example network
design system 301 to execute the network design system tool.
The network design system 301 can be any type of computing
device including a desktop computer, a server, a handheld
computing device, a console device, alaptop device or similar
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computing device. The network design system 301 includes a
set of processors 303 to run the components of the network
design system tool including a topology graphing module
305, a controller placement module 307 and similar compo-
nents. In other embodiments, any or all of these modules can
be implemented as a set of hardware modules or devices. The
processor 303 can also execute a network management mod-
ule 309 to communicate with and/or manage the split archi-
tecture network.

The topology graphing module 305 can convert a network
topology into a representative graph and perform graphing
functions on the representative graph to support the controller
placement module 307. The controller placement module 307
operates on the graph generated by the topology graphing
module 305 and directs graphing operations to implement an
optimal placement process or a ‘greedy’ placement process to
determine a location for a controller as described further
herein below.

The network management module 309 can communicate
with the controller placement module 303 and/or the topol-
ogy graphing module 305 to discover the network topology
for an automated process and/or to implement controller
placement in an automated process. In other embodiments,
the controller placement module 307 generates a report or
similar output to a user for implementing a network organi-
zation and the network management module 309 can be omit-
ted.

The illustrated split architecture network is an example
implementation with example controller placement consis-
tent with the controller placement optimization. In the
example, there is a controller 315 to control domain or split
architecture area consisting of switches 317. The switches
317 are managed by the controller 315 using the controller
routing tree 319 shown as dotted lines connecting the
switches 317, where the solid lines 321 are the links between
the switches 317. The process for determining the controller
315 location is described herein below.

Optimized Controller Location for Fast Failover

The general controller placement process is described in
regard to FIG. 4. The input of the controller placement pro-
cess is the network’s topology graph G=(V, E), and the output
is the controller_location, i.e., the network node at which the
controller will be located.

The general controller placement process is initiated by
graphing the topology of the split architecture network
(Block 401). The nodes and links between the nodes can be
determined by administrator input, automated discovery pro-
cesses or any combination thereof. The graph represents net-
work elements (e.g., switches) in the network as nodes in a
graph with the communication links between these network
elements represented as links or edges in the graph.

The process then traverses the nodes in the graph to calcu-
late a protection metric for each node in the graph (Block
403). The protection metric as described herein above and
further herein below, measures resilience of the split archi-
tecture network as a degree of node failure protection for each
possible controller location within the network, i.e, for each
possible node or network element in the network that can host
the controller. The protection metric measures resilience of
the split architecture network as a degree of node failure
protection within the split architecture network for a potential
controller placement. The degree of node failure protection
determines a subset of protected nodes (i.e., protected net-
work elements) in the set of nodes (i.e., the set of network
elements), where a protected node in the subset of protected
nodes can redirect control traffic over a tunnel to an interme-
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diate node in the graph that is not downstream of the protected
node, and where the tunnel traverses at least one downstream
node of the protected node.

Once the protection metric is determined for each node in
the graph, the network element corresponding to the node in
the graph with the best protection metric is selected (Block
405). The selected network element is then output to the
network administrator for manual implementation or to a
network management module for automated implementation
or any combination thereof. Selection of a network element
by this process provides an optimized protection strategy for
the network as a whole.

There are two more specific example processes for travers-
ing the graph and determining the protection metric for the
nodes therein. In the first process—an optimal placement
process—all possible locations for the controller are searched
and the one that maximizes the number of protected switches
is chosen. In a second process—a ‘greedy’ process, a faster
and simpler traversal of the nodes is made with a more
approximate evaluation.

Controller Placement—Optimal Placement Process

One embodiment of the process is illustrated below in

Table I as psuedocode.

TABLE I

Optimal Placement Process

1. V =set of all nodes in the network; n=IV|
2. for each node vinV do
3. T = Controller routing tree rooted at v
4. weight(T) =0
S. for each node u = v do
6. weight(u) =0
7. If (u is not protected) then
8. weight(u) = 1 + number of downstream nodes of u in
T
9. end
10. weight(T) = weight(T) + weight(u);
11. end
12. end
13. controller_location = node v with minimum weight(T)

As briefly described in the previous section, the protection
metric for each node in a graphed network is based on the
weight of a tree rooted at that node. The weight of the tree is
calculated where each unprotected downstream node in the
tree has a weight that is added to an initial value of the weight
of'the tree that is set to zero (line 4). For each node in the tree
that is unprotected a weight is assigned that is based on the
number its downstream nodes (Lines 7 and 8). The weights of
each of these unprotected nodes are then accumulated to
calculate the weight of the tree (line 10). After all of the tree
weights are generated, then the tree with the minimum weight
is selected for controller placement as it will provide the
configuration with the greatest resilience due to having the
least amount of unprotected nodes proximate to the control-
ler.

This process is described in relation to the flowchart of
FIG. 5. The optimal placement process is initiated by the
controller placement module in response to receiving a topo-
logical graph of the split architecture network from the topol-
ogy graphing module (Block 501). The process then starts to
iterate through each of the nodes in the graph (Block 503).
The nodes can be iterated through serially or in parallel as the
order of evaluation is not important as each node is to be
examined and a protection metric generated for it.

For each node in the graph a controller routing tree is
generated with the given node serving as the root of the tree
(Block 505). The weight of'this tree is given an initial value of
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zero. Then for each of these routing trees the nodes within
these trees are traversed (Block 507). The order of traversal of
the nodes within the routing trees is not important and each
can be examined in parallel or serially. For each node in each
routing tree an initial weight of zero is given (Block 509). A
check is then made whether the currently selected node is
protected as defined herein above (Block 511). If the cur-
rently selected node is not protected, then a weight for this
node is calculated (Block 515). The weight can be calculated
by a count of the number of nodes that are downstream from
the currently selected node. This number of downstream
nodes serves as the weight for the currently selected node in
the calculation of the overall routing tree weight. If the cur-
rently selected node in the routing tree is protected as defined
herein above, then it retains the weight of zero.

As each node weight is calculated it is summed with the
weight of the current tree or the ‘current root node weight’
(Block 517). This summation process can be done iteratively,
in which case a check is made to determine if additional nodes
in the tree need to be examined (Block 519). The summation
process can also be done is a parallel process or similar
process.

Similarly, a check is made to determine if all the nodes in a
graph have been reviewed to determine a weight of their
respective controller routing tree (Block 521). This weight of
the controller routing tree can be the protection metric for the
corresponding root node. Once all of the protection metrics
for all of the nodes in the graph have been calculated, then the
node with the best protection metric (e.g., the lowest or mini-
mum associated tree weight) can be selected to be assigned
the controller (Block 523).

Controller Placement—Greedy Placement Process

If the size of the split architecture network is large, then a
thorough search among all locations could become very com-
plex. In this second process, we introduce a greedy way of
finding a location with rich connections among its directly
connected switches. In this process, the degree of a node v
(number of its neighbors in G) is denoted by D(v). The pro-
cess starts by picking node v(1) (line 3), the first node from an
ordered list of network nodes, sorted in a decreasing degree
order.

TABLE I

Greedy Placement Process

1. V = set of all nodes in the network; n=IVI;

2. Sort nodes in V such that D(v(1)) = D(v(2)) =...=D(v(n))

3. selected-node< v(1)

4.

5. fori=1tondo

6. A =neighbors of v(i) in V

7. D'(v(i)) = number of members of A that are connected
to at least one other member of A via a path that does not pass
through v(i)

8. if D'(v(i)) > D'(selected-node) then selected-node < v(i)

9. if (D'(v(i)) == D(v(i)) then break

10. end

controller-location < selected-node

The goal in this process is to find the node with the maxi-
mum number of protected neighbors. Here, D'(v) denotes the
number of protected neighbors of node v. In the ith iteration of
the process, the number of protected neighbors (as defined
herein above) of node v(i) are calculated (line 6), and the
controller location is updated to node v(i) if it beats—in terms
of the number of protected neighbors—the previously
searched nodes (lines 7 and 8). The process stops when it finds
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the node with the maximum number of protected neighbors,
which will be chosen as the node where the controller will be
located at.

The protection metric used in this process is the maximum
number of protected neighbors. As explained before, the
nodes closer to the controller weigh more (than those further
from the controller), because if their connection to the net-
work is interrupted, all their downstream nodes will be
affected and disconnected. Therefore, it is important to pick a
location for the controller such that its neighbors—i.e., those
switches that are directly connected to the controller, are well
protected.

FIG. 6 is a flowchart of one embodiment of the greedy
placement process. The process can be initiated by receiving
a topological graph of the split architecture network by the
controller placement module (Block 601). The set of nodes
are then examined to determine the number of links to neigh-
boring nodes for each ofthe nodes in the graph. The nodes are
then sorted based on this assessment of the number of neigh-
bors (Block 603). Initially the node with the most neighbor
links is set as the default or current location for the controller.
The process then begins to iterate through each of the sorted
nodes starting with the node with the highest number of
neighbors and progressing through the sorted list in descend-
ing order (Block 605).

The selected node is then analyzed to determine the num-
ber of'the links to neighbors that are protected (Block 607). A
check is then made to compare this node’s number of pro-
tected links to the number of protected links of the node set as
or initially selected as the current location (Block 609). If the
node being analyzed exceeds the current location node then,
the current location node is updated (Block 611). The process
continues by checking if the number of protected nodes of the
current location node is less than the number of neighbors for
the next node to be examined (Block 613). If the number of
protected nodes exceeds the next node in the sorted list’s
number of neighbors, then the process can complete and
output the current selected node to be used as the controller
placement location (Block 615). Otherwise, the process con-
tinues to the next node in the sorted list.

Network resilience is one of the most important factors in
evaluating any network designs. A failure of a few millisec-
onds may easily result in terabyte data losses on the links of
high speed transmission rates. From the practical deploy-
ment’s perspective, these processes for optimized controller
location maximize the resilience between controller and the
switches in the split architecture. These processes maximize
network’s resilience by maximizing the number of switches
that are protected with preconfigured backup paths or tunnel-
based protection that are in proximity to the controller. In case
of failures, the affected forwarding elements could immedi-
ately switch over to their back up paths or tunnel-based routes
and restore their connections with the controller.

The embodiments of the invention can provide guidelines
for the operators to deploy their network in a cost-effective
manner. They can improve the resilience of the split architec-
ture network, which can prevent hundreds of thousands of
flows being affected by transient failures.

Use of Split Architecture Networks

A split-architecture network can be deployed for cellular
backhaul to support MPLS based forwarding. In LTE, it can
be also deployed in the mobile core to route the user traffic
between the MME, Serving-GW and PDN-GW. In this case,
the controller can be implemented in multiple sites or mul-
tiple locations in one site. The processes in this invention can
beused to calculate the best location for controller placement.
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When multiple technologies co-exist, e.g. GSM, 3G, LTE,
they may share the same packet transport networks. In this
example, a common set of controllers can be used to control
packet switching functions for all networks together. This
invention can be used to determine the location of controller
for controlling multiple technology networks.

In cloud computing, especially data center networks, to
reduce the cost of networking infrastructure, split architecture
with a smart controller and a set of low-cost switches is
preferred. In the data center network environment, the con-
troller placement process can be applied to deploy control-
lers.

Itis to be understood that the above description is intended
to be illustrative and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the inven-
tion should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:
1. A method implemented by a network topology design
system, the network topology design system including a pro-
cessing device, the method to determine placement of a con-
troller within a network with a split architecture where control
plane components of the split architecture network are
executed by a controller and the control plane components are
separate from data plane components of the split architecture
network, wherein the placement of the controller is selected
to minimize disruption of the split architecture network
caused by a link failure, a switch failure or a connectivity loss
between the controller and the data plane components, the
method comprising the steps of:
graphing, by the processing device, a topology of the split
architecture network, with links in the split architecture
network represented as a set of edges in a graph and
network elements in the split architecture network rep-
resented as a set of nodes;
calculating, by the processing device, a routing tree for
each node in the set of nodes with each node at a root of
a corresponding routing tree;

determining, by the processing device, a routing tree
weight for each routing tree by summing all node
weights in each respective routing tree, wherein each
routing tree weight is based on a number of unprotected
downstream nodes in each respective routing tree, where
aprotected node can redirect control traffic over a tunnel
to an intermediate node in the graph that is not down-
stream of the protected node and where the tunnel
traverses at least one downstream node of the protected
node;

determining, by the processing device, a protection metric

for each node based on each respective node’s corre-
sponding routing tree weight, where the protection met-
ric measures resilience of the split architecture network
as a degree of node failure protection within the split
architecture network for a potential controller place-
ment; and

selecting, by the processing device, a network element

corresponding to a node with a best protection metric to
be the controller for the split architecture network,
wherein the node with the best protection metric is a
node with a minimum weight for a corresponding rout-
ing tree amongst all weights for all routing trees corre-
sponding to the set of nodes in the split architecture
network.
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2. The method of claim 1, further comprising the step of:

sorting the set of nodes in descending order based on a

number of links to neighbor nodes for each node.

3. The method of claim 2, further comprising the step of:

determining a number of protected neighbor nodes with a

connection to other nodes.

4. The method of claim 3, further comprising the step of:

selecting a node with a largest number of protected neigh-

bor nodes to be the controller.

5. A computer system for determining a placement of a
controller for a split architecture network where control plane
components of the split architecture network are executed by
the controller and the control plane components are separate
from data plane components of the split architecture network,
wherein the placement of the controller is selected to mini-
mize disruption of the split architecture network caused by a
link failure, a switch failure or a connectivity loss between the
controller and the data plane components, the computer sys-
tem comprising:

a processor configured to execute a topology graphing

module and controller placement module,

the topology graphing module configured to graph a topol-

ogy of the split architecture network, with links in the
splitarchitecture network represented as a set of edges in
a graph and network elements in the split architecture
network represented as a set of nodes

the controller placement module configured to calculate a

routing tree for each node in the set of nodes with each
node at a root of a corresponding routing tree and deter-
mine a routing tree weight for each routing tree by sum-
ming all node weights in each respective routing tree,
wherein each routing tree weight is based on a number of
unprotected downstream nodes in each respective rout-
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ing tree, where a protected node can redirect control
traffic over a tunnel to an intermediate node in the graph
that is not downstream of the protected node and where
the tunnel traverses at least one downstream node of the
protected node, the controller placement module further
configured to determine a protection metric for each
node based on each respective node’s corresponding
routing tree weight, where the protection metric mea-
sures resilience of the split architecture network as a
degree of node failure protection within the split archi-
tecture network for a potential controller placement, the
controller placement module further configured to select
a network element corresponding to a node with a best
protection metric to be the controller for the split archi-
tecture network, wherein the node with the best protec-
tion metric is a node with a minimum weight for a
corresponding routing tree amongst all weights for all
routing trees corresponding to the set of nodes in the split
architecture network.

6. The computer system of claim 5, wherein the controller
placement module is further configured to sort the set of
nodes in descending order based on a number of links to
neighbor nodes for each node.

7. The computer system of claim 6, wherein the controller
placement module is further configured to determine a num-
ber of protected neighbor nodes with a connection to other
nodes.

8. The computer system of claim 7, wherein the controller
placement module is further configured to select a node with
a largest number of protected neighbor nodes to be the con-
troller.
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